Multiple fixed effects in binary response panel data models


  • This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as


This paper considers the adaptability of estimation methods for binary response panel data models to multiple fixed effects. It is motivated by the gravity equation used in international trade, where important papers such as Helpman, Melitz and Rubinstein (2008) use binary response models with fixed effects for both importing and exporting countries. Econometric theory has mostly focused on the estimation of single fixed effects models. This paper investigates whether existing methods can be modified to eliminate multiple fixed effects for two specific models in which the incidental parameter problem has already been solved in the presence of a single fixed effect. We find that it is possible to generalize the conditional maximum likelihood approach of Rasch (1960, 1961) to include two fixed effects for the logit. Monte Carlo simulations show that the conditional logit estimator presented in this paper is less biased than other logit estimators without sacrificing on precision. This superiority is emphasized in small samples. An application to trade data using the logit estimator further highlights the importance of properly accounting for two fixed effects.

This article is protected by copyright. All rights reserved